Difference between revisions of "Arcane mixing techniques"

From Gender and Tech Resources

m (NOT)
m (Digital techniques basics)
Line 128: Line 128:
 
| 1 || 1 || 1
 
| 1 || 1 || 1
 
|}
 
|}
 +
 +
=== Universal gates ===
 +
 +
The <code>NAND</code> and the <code>NOR</code> gate can be considered to be "universal" because you can make any of the basic operations out of its combinations: an inverter, an OR gate or an AND gate. Non-inverting gates do not have this versatility since they can not make an invert.
  
 
== Boolean algebra applied ==
 
== Boolean algebra applied ==
  
 
== Examples on the board ==
 
== Examples on the board ==

Revision as of 11:38, 31 August 2015

Resources

Breadboards

Cable-bus.png

You can buy solderless breadboards in a shop or online. Mind that you pick scalable like the SD-12 so you can hook up breadboards together and they become reuseful for other projects such as prototyping our own greenhouse sprinkler management systems.

Alternatively (and the path I will take), start gathering and collecting IDC ribbon connectors (Floppy drive cables, old HD cables, SCSI cables) to build your own breadboards with. To do this, you will also need a solder iron, hot glue, wire (for example telephone wire will do), a small screw driver, and a clamp. This board will also be scalable. Fine grained scalable. :D

Digital techniques basics

For conceptual basics from the atomic level up see Semiconductors, Diodes and Transistors https://www.youtube.com/watch?v=wPHG0DCWcC0 AND An Introduction to Logic Gates https://www.youtube.com/watch?t=10&v=95kv5BF2Z9E.

Gates

AND

The AND gate behaves in the same way as the logical and operator: Output is true when both inputs are true and any otherwise false:

And.png
Input 1 Input 2 Output
0 0 0
0 1 0
1 0 0
1 1 1

OR

The OR gate behaves like a logical inclusive or: Output is true if either or both of the inputs are true and false if both inputs are false:

Or.png
Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 1

XOR

The XOR (exclusive-OR) gate acts as a logical either/or: the output is true if the inputs are different, and false if the inputs are the same:

Xor.png
Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

NOT

A logical inverter, alias NOT gate, has only one input and reverses logic state:

Not.png
Input 1 Output
0 1
1 0

 

NAND

A NAND gate works like an AND gate followed by a NOT gate:

Nand.png
Input 1 Input 2 Output
0 0 1
0 1 1
1 0 1
1 1 0

NOR

The NOR gate is a combination OR gate followed by an inverter:

Nor.png
Input 1 Input 2 Output
0 0 1
0 1 0
1 0 0
1 1 0

XNOR

XNOR (exclusive-NOR) gate is a combination of an XOR gate followed by an inverter:

Xnor.png
Input 1 Input 2 Output
0 0 1
0 1 0
1 0 0
1 1 1

Universal gates

The NAND and the NOR gate can be considered to be "universal" because you can make any of the basic operations out of its combinations: an inverter, an OR gate or an AND gate. Non-inverting gates do not have this versatility since they can not make an invert.

Boolean algebra applied

Examples on the board