Difference between revisions of "Arcane mixing techniques"

From Gender and Tech Resources

m
m (Digital techniques basics)
Line 26: Line 26:
 
| 1 || 1 || 1
 
| 1 || 1 || 1
 
|}
 
|}
 +
 +
The <code>AND</code> gate behaves in the same way as the logical ''and'' operator: Output is ''true'' when both inputs are ''true'' and any otherwise ''false.''
  
 
'''OR'''
 
'''OR'''
 +
 
[[File:Or.png|140px|thumb|left]]
 
[[File:Or.png|140px|thumb|left]]
 +
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 41: Line 45:
 
| 1 || 1 || 1
 
| 1 || 1 || 1
 
|}
 
|}
 +
 +
The <code>OR</code> gate behaves like a logical inclusive ''or'': Output is ''true'' if either or both of the inputs are ''true'' and ''false'' if both inputs are ''false''.
  
 
'''XOR'''
 
'''XOR'''
 +
 
[[File:Xor.png|140px|thumb|left]]
 
[[File:Xor.png|140px|thumb|left]]
 
{| class="wikitable"
 
{| class="wikitable"
Line 56: Line 63:
 
| 1 || 1 || 0
 
| 1 || 1 || 0
 
|}
 
|}
 +
 +
The <code>XOR</code> (e'''x'''clusive-'''OR''') gate acts as a logical ''either/or'': the output is ''true'' if the inputs are different, and ''false'' if the inputs are the same.
  
 
'''NOT'''
 
'''NOT'''
Line 67: Line 76:
 
| 1 || 0   
 
| 1 || 0   
 
|}
 
|}
 +
A logical inverter, alias <code>NOT</code> gate, has only one input and reverses logic state.
  
 
'''NAND'''
 
'''NAND'''
Line 82: Line 92:
 
| 1 || 1 || 0
 
| 1 || 1 || 0
 
|}
 
|}
 +
 +
A <code>NAND</code> gate works like an <code>AND</code> gate followed by a <code>NOT</code> gate.
  
 
'''NOR'''
 
'''NOR'''
Line 97: Line 109:
 
| 1 || 1 || 0
 
| 1 || 1 || 0
 
|}
 
|}
 +
 +
The <code>NOR</code> gate is a combination <code>OR</code> gate followed by an inverter.
  
 
'''XNOR'''
 
'''XNOR'''
Line 112: Line 126:
 
| 1 || 1 || 1
 
| 1 || 1 || 1
 
|}
 
|}
 +
<code>XNOR</code> (e'''x'''clusive-'''NOR''') gate is a combination of an <code>XOR</code> gate followed by an inverter.
  
 
== Boolean algebra applied ==
 
== Boolean algebra applied ==
  
 
== Examples on the board ==
 
== Examples on the board ==

Revision as of 11:04, 31 August 2015

Resources

Breadboards

Cable-bus.png

You can buy solderless breadboards in a shop or online. Mind that you pick scalable like the SD-12 so you can hook up breadboards together and they become reuseful for other projects such as prototyping our own greenhouse sprinkler management systems.

Alternatively (and the path I will take), start gathering and collecting IDC ribbon connectors (Floppy drive cables, old HD cables, SCSI cables) to build your own breadboards with. To do this, you will also need a solder iron, hot glue, wire (for example telephone wire will do), a small screw driver, and a clamp. This board will also be scalable. Fine grained scalable. :D

Digital techniques basics

For conceptual basics from the atomic level up see Semiconductors, Diodes and Transistors https://www.youtube.com/watch?v=wPHG0DCWcC0 AND An Introduction to Logic Gates https://www.youtube.com/watch?t=10&v=95kv5BF2Z9E.

Gates

AND

And.png
Input 1 Input 2 Output
0 0 0
0 1 0
1 0 0
1 1 1

The AND gate behaves in the same way as the logical and operator: Output is true when both inputs are true and any otherwise false.

OR

Or.png
Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 1

The OR gate behaves like a logical inclusive or: Output is true if either or both of the inputs are true and false if both inputs are false.

XOR

Xor.png
Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

The XOR (exclusive-OR) gate acts as a logical either/or: the output is true if the inputs are different, and false if the inputs are the same.

NOT

Not.png
Input 1 Output
0 1
1 0

A logical inverter, alias NOT gate, has only one input and reverses logic state.

NAND

Nand.png
Input 1 Input 2 Output
0 0 1
0 1 1
1 0 1
1 1 0

A NAND gate works like an AND gate followed by a NOT gate.

NOR

Nor.png
Input 1 Input 2 Output
0 0 1
0 1 0
1 0 0
1 1 0

The NOR gate is a combination OR gate followed by an inverter.

XNOR

Xnor.png
Input 1 Input 2 Output
0 0 1
0 1 0
1 0 0
1 1 1

XNOR (exclusive-NOR) gate is a combination of an XOR gate followed by an inverter.

Boolean algebra applied

Examples on the board